
Visa Checkout
JavaScript Integration Guide
Effective: October 7, 2014

© 2013-2014 Visa Inc. All Rights Reserved. Version 2.5

Important Note on Intellectual Property

This document is protected by copyright restricting its use, copying, distribution, and decompilation and is
furnished by Visa Inc. for review and informational purposes only or as otherwise specified under and in
strict accordance with the applicable agreement between the reader of this document (“You”) and Visa
Inc. (“Agreement”). Any other use of this document is strictly prohibited and, except as permitted by the
Agreement, You may not reproduce any part of this document, store this document in a retrieval system,
or transmit this document, in any form or by any means, electronic, mechanical, recording, or otherwise,
without the prior written consent of Visa Inc. Visa and other trademarks are registered trademarks of Visa
International Service Association, and are used under license by Visa Inc. All other product names mentioned
herein are the trademarks of their respective owners.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN: THESE CHANGES WILL BE

INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. VISA MAY MAKE IMPROVEMENTS AND/OR

CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT
ANY TIME. NOTHING CONTAINED IN THIS DOCUMENT SHOULD BE INTERPRETED IN ANY WAY AS A
GUARANTEE OR WARRANTY OF ANY KIND BY VISA INC.

If you have technical questions or questions regarding a Visa service or capability, contact your Visa
representative.

Contents

Chapter 1 • Integration Overview

About the Visa Checkout Button and Lightbox 1-1

Checkout Flow. 1-3

Integration Steps . 1-3

Integration Options . 1-4

Responding to Payment Events 1-4

Updating Payment Information in Visa Checkout 1-5

Visa Checkout API Summary . 1-5

Clickjacking Prevention Requirement 1-6

Fraud and Risk . 1-6

Visa Checkout Fraud Checks . 1-6

Visa Checkout Risk Advice. 1-7

Risk Declines . 1-7

Card Security Code Usage . 1-8

Chapter 2 • Visa Checkout JavaScript and Button Reference

sdk.js JavaScript Library . 2-1

v-button Image Class . 2-1

Tell Me More Link . 2-4

October 27, 2014 i

Contents Visa Checkout
JavaScript Integration Guide

onVisaCheckoutReady Function . 2-4

V.init Event Handler . 2-5

Settings Properties . 2-7

Shipping Properties . 2-9

Review Properties . 2-10

Payment Properties . 2-10

Payment Request Properties . 2-11

Response to Payment Success Events 2-14

Response to Payment Cancelled Events 2-16

Response to Error Events . 2-16

Optimizing the Checkout Flow for Mobile Browsers 2-17

Complete Web Page HTML Example 2-17

Chapter 3 • Update Payment Info Pixel Image

Update Payment Info Pixel Image Summary 3-1

Public and Private Key Security 3-1

Update Payment Info Pixel Image Request 3-2

Update Payment Info Pixel Image Response 3-5

Update Payment Data Info Pixel Image Success Response 3-5

Update Payment Data Info Pixel Image Error Messages 3-6

Update Payment Info Pixel Image Examples 3-6

Appendix A • SHA256–Bit Hashing

SHA256–Bit Hashing Algorithm . A–1

SHA256–Bit Hashing Examples . A–2

Appendix B • Clickjacking Prevention

Clickjacking Prevention Steps . B–1

ii October 27, 2014

Visa Checkout
JavaScript Integration Guide

Contents

Checking for Hidden Layers . B–1

Using the X-Options Header . B–1

Testing Your Clickjacking Prevention Implementation B–2

Example Server-Side Clickjacking Prevention Implementation B–2

Java Servlet . B–2

Tomcat Configuration . B–3

Appendix C • AVS and CVV Responses

AVS Codes . C–1

CVV Codes . C–2

Appendix D • US, Canadian, and Australian Location Abbreviations

United States Abbreviations for States and Mailing Locations D–1

Canadian Province Abbreviations . D–3

Australian State and Territory Abbreviations D–3

Appendix E • Document Revision History

October 27, 2014 iii

iv October 27, 2014

Contents Visa Checkout
JavaScript Integration Guide

THIS PAGE INTENTIONALLY LEFT BLANK.

Integration Overview 1

Visa Checkout is a digital payment service in which consumers can store card information
for Visa, MasterCard, Discover, and American Express cards. Visa Checkout provides
quick integration for merchants that want to accept payments from these card holders.
Visa Checkout leverages your existing environment because most websites in which Visa
Checkout will be used already exist. This means you most likely will add Visa Checkout
buttons to existing pages and implement business and event logic using programming
languages, tools, and techniques in the same way you currently do. For this reason, Visa
Checkout is quite flexible and imposes only a few requirements for its use.

About the Visa Checkout Button and Lightbox

Checking out and paying with Visa Checkout begins with a button click on the Visa
Checkout button, which could be a generic version or one that shows the image of the
credit card brand being proposed to the consumer:

•

•

Important:

You must follow the Visa Checkout user interface guidelines, which are described
in Getting Started With Visa Checkout.

Regardless of how the consumer arrives at a page with a Visa Checkout button, when a
consumer clicks a Visa Checkout button, the Visa Checkout lightbox appears from which
the consumer can either sign up to create an account, sign in, and make a payment:

October 27, 2014 1-1

Integration Overview Visa Checkout
JavaScript Integration Guide

Recommended Browser Versions

The following browsers are recommended for use by Visa Checkout:
• Internet Explorer, version 8 or later

Note: –Do not use the compatibility setting; specifically, do not use it to specify a
version less than IE8; for example, do not specify x-ua-compatible=IE7 in
your pages.

• Firefox, version 25 or later,
• Chrome, version 31 or later, excepting beta versions
• Safari, version S6 or later
• iOS, version 6 or later
• Android, version 4 or later
Other browsers may be acceptable; however, the HTML pages that contain a Visa
Checkout button must be compatible with HTML 4.01 or higher, which includes XHTML
1.0 and above. Typically, you specify the HTML version in the DOCTYPE declaration for

1-2 October 27, 2014

Visa Checkout
JavaScript Integration Guide

Checkout Flow

version 4.x as follows: <!DOCTYPE html …>. HTML 5 does not require explicit version
numbers.

Checkout Flow
The following diagram, explained below, shows a typical frontend checkout flow, which
identifies the points of interaction between your site and Visa Checkout:

Typically, a consumer decides to click Visa Checkout to check out from either your
shopping cart page or on your payment page. Checkout or payment from other pages is
possible; in all cases, you must place a Visa Checkout button on any page from which
the consumer can check out or pay. Each of the pages on which you place a Visa
Checkout button must load the Visa Checkout library, which causes Visa Checkout to
send an initialization event when the page is loaded. You respond to the event by setting
Visa Checkout lightbox characteristics related to its operation and appearance and by
setting characteristics about the payment request itself.

Clicking a Visa Checkout button invokes the Visa Checkout lightbox, enabling a
consumer to sign into Visa Checkout and make a payment request. After signing in to
Visa Checkout, the consumer can change the payment method and, if enabled to do so,
change the shipping address. When the consumer finishes and the lightbox closes, or an
error occurs, Visa Checkout sends you an event that includes status information and a
call ID that identifies the payment request.

Integration Steps
At a high level, your integration consists of modifying your checkout and payment pages to:
1. Place the Visa Checkout button on your page and provide JavaScript to enable it:

• Load the Visa Checkout JavaScript library, sdk.js.
• Initialize the library properties related to the lightbox appearance and the payment

request.
• Provide event handlers that respond when the lightbox closes, including a

payment success handler to set up payment processing using your own business
logic.

2. Decrypt the payload returned with a payment success event and process the payment
3. Update payment information in Visa Checkout after the payment has been processed
All integrations require you to perform Step 1. Visa Checkout provides you with the
button to use; however, there is considerable flexibility for its use. See Getting Started
With Visa Checkout for button placement and usage information. You must implement
1 JavaScript function to specify library properties and implement handlers for lightbox

October 27, 2014 1-3

Integration Overview Visa Checkout
JavaScript Integration Guide

events. See Complete Web Page HTML Example for an example web page that contains
the JavaScript function.

In Step 2, a payment success event returns encrypted consumer payment information,
which includes card verification, authentication, and risk information. The personal
account number (PAN) can be returned by agreement with Visa Checkout. Typically, you
use your existing business logic to process the payment request. Whether you need to
decrypt or use this information depends on your business logic and who performs it; see
Integration Options for more information.

Note: –In addition to a payment success event, you must also handle
• A payment cancellation event, which indicates that the consumer closed the lightbox

before confirming the payment request.

• A payment error event, which indicates that an error occurred during the operation
of the lightbox, which in most cases indicates an issue with the payment request
or initialization of the lightbox.

How you update payment information in Visa Checkout (Step 3) depends on your
existing business logic, current capabilities and security requirements. In some cases,
requirements may be imposed by your processor or an eCommerce partner, which is
someone you might choose to handle Visa Checkout transactions on your behalf. Visa
Checkout provides several integration options to meet your requirements, which are
described in Updating Payment Information in Visa Checkout.

Integration Options

Visa Checkout provides you with several options to handle consumer payment information
returned by a payment event and update Visa Checkout with the result of processing a
payment. You can handle these tasks by

• Taking action from your web page or front-end server

• Calling a Visa Checkout API from either a front-end or back-end server; see Visa
Checkout API Summary for more information

• Passing the ID associated with the Visa Checkout payment request, which is a call
ID in Visa Checkout terminology, to your server or to a processor or an eCommerce
partner for payment processing

Note: –You can pass the call ID to your server as a convenience for remote process
communication.

These choices are not mutually exclusive; for example, you can process consumer
payment information with your front-end server and update payment information in Visa
Checkout another way.

Responding to Payment Events

A payment event occurs when the consumer completes the payment request, the
consumer cancels the request, or an error occurs while the lightbox is open. If the
payment event indicates success, consumer information is available to complete the
payment, What you do with the payment information depends on what information
you need and how you complete the payment. The consumer payment information is
encrypted in the payload returned with the event.

1-4 October 27, 2014

Visa Checkout
JavaScript Integration Guide

Visa Checkout API Summary

Important:

YOU ARE RESPONSIBLE FOR THE SECURITY OF THE INFORMATION BEING
DECRYPTED. NEVER DECRYPT THE PAYLOAD DIRECTLY IN YOUR WEB PAGE.

The transaction's call ID is provided along with the event. You have three choices for
handling the event:
• Pass the call ID to your server for payment processing or to the entity that will process

the payment for you; in which case, the call ID can be used with the Get Payment
Data API to obtain the consumer payment information.

• Pass the encrypted payload to your server for payment processing or to the entity
that will process the payment for you.

• Call a Visa Checkout API, Get Payment Data, to obtain the consumer payment
information from the server you use to handle payment processing, This is what an
entity that processes payments on your behalf must do also. For more information,
see Visa Checkout Client API Reference.

Note: –See Visa Checkout Client API Reference for consumer information field contents.

Updating Payment Information in Visa Checkout

After the payment has been processed, you must update Visa Checkout with the
information. This might occur in real time, immediately after the lightbox closes, or could
happen later. You may take the action yourself or it might be handled on your behalf by
a payment processor or an eCommerce partner. The following integration options are
available, depending on your configuration:
• Update Visa Checkout payment information from your web page directly, by passing

parameters when a 1-pixel image provided by Visa Checkout is loaded; see Update
Payment Info Pixel Image

• Pass the call ID to your server or to the entity that will take action to on your behalf; in
which case, the call ID can be used with the Update Payment Info API to update Visa
Checkout payment information

• Call a Visa Checkout API, Update Payment Info, to update payment information, which
is also what an entity that takes this action for you must do; for more information,
see Visa Checkout Client API Reference

Visa Checkout API Summary
The Visa Checkout API consists of REST-style messages, whose request and response
pairs are transported using the HTTPS protocol. Many programming languages provide
HTTPS interfaces, or you can send requests and receive responses as text; of course,
there are headers and encryption involved. Visa Checkout does not dictate the use of a
particular programming language to use its API.

Important:

Visa Checkout does not require you to call Visa Checkout APIs because all
interactions with Visa servers can also be handled from your pages using only the
Visa Checkout JavaScript library. Specifically, you do not need to support domain
based filtering nor do you need access to specific Visa IP addresses.

The following APIs are available to all merchants:

October 27, 2014 1-5

Integration Overview Visa Checkout
JavaScript Integration Guide

Resource Description

payment/data/{callId} GET obtains consumer payment information associated with the
payment request (callId). It provides the same information as
though you used the Visa Checkout JavaScript library.

payment/info/{callId} PUT updates the status of the transaction and the amounts
associated with the payment request (callId) specified in the
Visa Checkout library initialization. It is an alternative to using the
Update Payment Information Pixel Image on your web pages.

Note: –Additional APIs are available for onboarding merchants for Visa Checkout and
managing their relationship with those merchants. See the Visa Checkout Client
API Reference for all API information, including consumer payment information
returned by the Visa Checkout API or payment success event.

Clickjacking Prevention Requirement
You must provide code on each page that hosts a Visa Checkout button and headers on
your server to prevent clickjacking, which could occur if malicious code is hidden beneath
legitimate buttons or other clickable content on your web page. For example, malicious
code might monitor keystrokes and steal confidential information. Customers could be
“clickjacked” when clicking a legitimate link on an infected page in which there are actually
buttons on a transparent layer they cannot see.

Visa Checkout periodically reviews each page from which a Visa Checkout button is
clicked to determine if adequate anticlickjacking preventions have been taken. To prevent
clickjacking, you must ensure that pages cannot be loaded as an iFrame of some other
page. Specifically, you must
• Ensure that the associated DOM document for the page has no child pages in which

malicious code could reside.
• Implement X-FRAME-OPTIONS DENY or X-FRAME-OPTIONS SAMEORIGIN filtering

for headers on your server to prevent your page from being loaded from another
domain.

For more information about clickjacking prevention, see Clickjacking Prevention.

Fraud and Risk
Visa Checkout uses a combination of proprietary and third-party technologies to
implement fraud checks while processing transactions on your behalf. These checks
provide account validations on all Visa Checkout accounts when :
• the account is created or accessed
• a customer logs in to Visa Checkout
• a card is associated with the account, updated, or used in a transaction

Visa Checkout Fraud Checks
Examples of fraud checks include device and IP data checks, velocity, address
verification (AVS), and card number verification (CVN or CVV) results from the card
issuer, enrollment attributes, Visa Checkout transaction history, and Visa internal fraud
checks. In addition, Visa Checkout provides risk advice, which categorizes the transaction
based on anticipated risk. Specifically, for every card added to a Visa Checkout account,
regardless of card brand, Visa Checkout performs a validation procedure prior to passing

1-6 October 27, 2014

Visa Checkout
JavaScript Integration Guide

Fraud and Risk

the card information to a merchant. This validation procedure includes an AVS check
(Address Verification) and a verification of the CVN or CVV number. A full or partial
match is required for Address Verification and a match or unsupported response is
required for CVN.

Important:

Although Visa Checkout performs an array of proprietary fraud checks while
interacting with consumers, Visa Checkout never declines a transaction request
based on risk concerns. Your own control models, processes, and procedures should
provide the best protection against fraud based on the philosophy that you know your
customers and their behavior the best and are in the best position to assess own risk
tolerance for a given transaction, VISA CHECKOUT FRAUD CHECKS SHOULD
NEVER BE USED TO REPLACE OR SUPPLANT YOUR OWN TECHNIQUES;
RATHER, THEY SHOULD SUPPLEMENT YOUR EXISTING CONTROLS.

Visa Checkout Risk Advice

When assessing a transaction for anticipated risk, Visa Checkout categorizes a
transaction as:
• Low anticipated risk
• Medium anticipated risk
• High anticipated risk
Because fraud experience and tolerance for risk vary from merchant to merchant,
you should calibrate Visa Checkout risk advice with your own experience and with
your customers’ characteristics and behavior to use it effectively in your own fraud
management policies. For example, if you sell low-price recurring digital content, you may
be more willing to accept risk because the financial exposure is much less, and your
customers leave you few alternative mitigation strategies, than if you sell high priced,
low margin goods.

To use Visa Checkout risk advice with your existing system, consider performing the
following analysis:
• Incorporate the Visa Checkout risk advice into your fraud management policies to

make decisions, paying particular attention to transactions with a high risk indicator
• Monitor your transactions for at least a month, collecting both your existing system’s

risk information and Visa Checkout risk advice.
• Compare the results, by type of payment instrument, against actual fraud losses.
• Make appropriate rules changes within your own system to weigh the Visa Checkout

risk advice according to the results and your tolerance for risk, lost sales, and manual
review costs.

Your analysis may verify that Visa Checkout risk advice confirms your own experience
with risk, or you may find that the Visa Checkout categories indicate a different amount
of risk for you than the labels imply. Regardless, after calibration with your data, Visa
Checkout risk advice can provide another data point for identifying risk, which could be
used in a model that triggers an investigative process or procedure.

Risk Declines

Risk declines are the responsibility of the card issuer and the merchant. Visa Checkout
does not decline transactions at a transaction level, except in extreme circumstances; for

October 27, 2014 1-7

Integration Overview Visa Checkout
JavaScript Integration Guide

example, when an account has been disabled due to suspicious activity or a government
sanctions list match.

Card Security Code Usage

Visa Checkout performs a verification of the Card Security Code for each card used for
a Visa Checkout transaction or passed to a merchant for processing. Similar to a "card
on file" scenario, the validation can be performed once, without re-verifying the Card
Security Code during each use of the card.

Important:

Never collect from consumers their CVV2, CVN, CVC2, CID or any other such security
feature for card not present transactions (collectively, called Card Security Codes)
separate and apart from Visa’s collection of the same via the checkout experience
with the Visa Checkout Services unless you have Visa’s express written consent to do
so or your collection of the Card Security Code is specifically required by Visa's Rules.
You must never store Card Security Codes.

You are encouraged to implement best practices in regards to risk management for Visa
Checkout transactions as you would for any other e-Commerce transaction. Because the
Card Security Code has been validated for the Visa Checkout payment method being
used, a historical “match” response should be assumed.

Currently, card brands supported by Visa Checkout do not downgrade interchange based
on the absence of a Card Security Code for "card not present" transactions. You should
check with your acquirer or processor to determine whether they have any policies or fees
specific to your contract related to authorizations that do not contain a Card Security Code.

Typically, the Card Security Code in a response is optional information that can be included
in a re-presentment. However, whether a Card Security Code is required to reverse a
particular chargeback may depend on the card brand. Merchants are encouraged to
speak directly with their acquirer to understand the chargeback re-presentment rules and
reversal criteria for a specific card brand.

1-8 October 27, 2014

Visa Checkout JavaScript and
Button Reference

2

sdk.js JavaScript Library
Use the sdk.js JavaScript library to control the operation of Visa Checkout on your site.
There is one version for sandbox testing and one for live:

Platform URL

Sandbox https://sandbox-assets.secure.checkout.visa.com/
checkout-widget/resources/js/integration/v1/sdk.js

Live https://assets.secure.checkout.visa.com/
checkout-widget/resources/js/integration/v1/sdk.js

Example

<body>
...
<script type="text/javascript"
src="https://sandbox-assets.secure.checkout.visa.com/
checkout-widget/resources/js/integration/v1/sdk.js">
</script>
</body>

v-button Image Class
Use the v-button img class to render a Visa Checkout button that a consumer clicks to
initiate a payment. The rendered buttons must follow the Visa Checkout user interface
guidelines, which are described in Getting Started With Visa Checkout.

Platform Source URL

Sandbox https://sandbox.secure.checkout.visa.com/
wallet-services-web/xo/button.png

Live https://secure.checkout.visa.com/wallet-services-web/xo/button.png

October 27, 2014 2-1

Visa Checkout JavaScript and Button Reference Visa Checkout
JavaScript Integration Guide

Query Parameters

Parameter Description
size (Optional) Width of the button, in pixels.

You can either specify size to display a standard size button, or
you can specify height and width to specify a custom size.
If you do not specify size or both height and width, the
button size is 213 pixels. If you specify height or width, the
value of size is ignored.

Format: It is one of the following values:

• 154 - small

• 213 - medium (default)

• 425 - High resolution or large

Any other value defaults to 213 pixels.

Example: size=154

Since 2.0

height Height of the button, in pixels, for custom button sizes.

You must specify the height if you specify a value for width.
The value you choose determines the range of allowable values
for width.

Format: It is one of the following values:

• 34

• 47

• 94

Example: height=94

Since 2.4

width Width of the button, in pixels, for custom button sizes. You must
specify the width if you specify a value for height.

Format: It is one of the following values:

• less than 477 if height is 34; default value is 154

• greater than 476 and less than 659 if height is 47; default
value is 213

• greater than 658 and less than 1317 if height is 94;
default value is 425

The default value is used if the value for width is invalid for
the specified height.

Example: width=200

Since 2.4

2-2 October 27, 2014

Visa Checkout
JavaScript Integration Guide

v-button Image Class

Parameter Description
locale (Optional) The locale, which controls how text displays in a Visa

Checkout button and the Visa Checkout lightbox. If not specified,
the Accepted-Language value in HTTPS header is used, or if not
present, en_US is used.

Format: It is one of the following values:

• en_US - American English

• en_CA - Canadian English

• fr_CA - Canadian French

• en_AU - Australian English

Since 2.0

color (Optional) The color of the Visa Checkout button.

Format: It is one of the following values:

• standard (default)

• neutral

Note: –Any other value for color will default to standard.

Example: color=neutral

Since 2.5

cardBrands (Optional) Override value for brands associated with card art to
be displayed. If a brand matching the consumer's preferred card
is specified, the card art is displayed on the button; otherwise,
a generic button is displayed.

Format: Comma-separated list of one or more of the following
brands:

• VISA

• MASTERCARD

• AMEX

• DISCOVER

Example: cardBrands=VISA,AMEX

Since 2.0

acceptCanadianVisaDebit Whether a Canadian merchant accepts Visa Canada debit cards;
required for Canadian merchants, otherwise, ignored.

Format: One of the following values:

• true - Visa Canada debit cards accepted

• false - Visa Canada debit cards not accepted

Example: acceptCanadianVisaDebit : "true"

Since 2.0

October 27, 2014 2-3

Visa Checkout JavaScript and Button Reference Visa Checkout
JavaScript Integration Guide

Examples

<body>
...
<img alt="..." class="v-button" role="button" src=
"https://sandbox.secure.checkout.visa.com/wallet-services-web/xo/button.png?..."
/>
...
</body>

Note: –You can specify tabbing behavior to the button by including the tabindex attribute:

<img alt="..." class="v-button" role="button" tabindex="0" src=
"https://sandbox.secure.checkout.visa.com/wallet-services-web/xo/button.png?..."
/>

Tell Me More Link

Use the v-learn-default or v-learn <a> (hyperlink) class to provide a Tell Me More
link that a consumer clicks to learn more about Visa Checkout. The link is described in
Getting Started With Visa Checkout. These classes cause a pop up to be displayed in the
specified language, which by default is en_US;

Attribute Description
data-locale (Optional) The locale, which controls how the pop up text displays

in a Tell Me More link.

Format: It is one of the following values:

• en_US - American English (default)

• en_CA - Canadian English

• fr_CA - Canadian French

• en_AU - Australian English

Since 2.5

You must provide the link's text, which typically is Tell Me More, in the specified locale.
The v-learn-default class provides default styling, e.g. color, font, and size, and
right-aligns the text to the Visa Checkout button's container, not to the button itself. Use
the v-learn class if you need a custom style or position.

Examples

Tell Me More
Tell Me More

onVisaCheckoutReady Function

You control Visa Checkout button and lightbox operation by defining an
onVisaCheckoutReady function that includes handlers for initialization and purchase
events. The function includes 2 kinds of event handlers:

2-4 October 27, 2014

Visa Checkout
JavaScript Integration Guide

V.init Event Handler

Event Handler Description
V.init (Required) Event handler for initialization. Specify values for

initialization in this handler.

Since 2.0

V.on (Required) Event handler for Visa Checkout purchase events.
Specify actions to take on the following Visa Checkout events:

• payment.success

• payment.cancel

• payment.error

Since 2.0

Example

<head>
...
<script type="text/javascript">
function onVisaCheckoutReady(){
V.init({ apikey: "merchantApikey",... });
V.on("payment.success", function(payment){ ... });
V.on("payment.cancel", function(payment){ ... });
V.on("payment.error", function(payment, error){ ... });
}

</script>
...
</head>

V.init Event Handler

Use the V.init event handler to specify a JSON object that contains initialization values
for the Visa Checkout JavaScript library. You specify values for these properties:

Property Description
apikey (Required) The API key that Visa Checkout created when you

created the Visa Checkout account. You will use both a live key
and a sandbox key, which are different from each other.

Format: Alphanumeric; maximum 100 characters

Since 2.0

externalProfileId (Optional) Profile ID, and also the profile's name, created
externally by a merchant or partner, which Visa Checkout uses
to populate settings, such as accepted card brands and shipping
regions. The properties set in this profile override properties in
the merchant's current profile.

Format: Alphanumeric; maximum 50 characters

Since 2.0

October 27, 2014 2-5

Visa Checkout JavaScript and Button Reference Visa Checkout
JavaScript Integration Guide

Property Description
externalClientId Unique ID associated with the client, such as a merchant, which

could be assigned by you or Visa Checkout.

Format: Alphanumeric; maximum 100 characters

Since 2.0

sourceId (Optional) Your merchant reference ID.

Format: Alphanumeric; maximum 100 characters

Since 2.0

settings (Optional) One or more name-value pairs, each of which specifies
a configuration attribute.

Format: settings

Since 2.0

paymentRequest (Optional) One or more name-value pairs, each of which specifies
a payment request attribute.

Format: paymentRequest

Since 2.0

2-6 October 27, 2014

Visa Checkout
JavaScript Integration Guide

V.init Event Handler

Settings Properties

Property Description
locale (Optional) Override value for the locale, which controls how text

displays in the Visa Checkout checkout button and lightbox. By
default, Visa Checkout determines the locale from the consumer's
browser settings. Do not use the locale attribute unless explicit
control over the button or lightbox locale is required.

Format: It is one of the following values:

• en_US - American English

• en_CA - Canadian English

• fr_CA - Canadian French

• en_AU - Australian English

The value of the locale attribute must be compatible with the
value of the country attribute.

Since 2.0

countryCode (Optional) Override value for the country code, which controls how
text displays in the Visa Checkout checkout button and lightbox.
By default, Visa Checkout determines the country from the
consumer's IP address. Do not use the countryCode attribute
unless explicit control over the display is required.

Format: It is one of the following values:

• US - United States

• CA - Canada

• AU - Australia

The value of the country attribute must be compatible with the
value of the locale attribute.

Since 2.0

logoUrl (Optional) Absolute secure (HTTPS) URL path to the logo to
display in the Visa Checkout lightbox; otherwise, the default Visa
Checkout logo appears.

Your image must not exceed 174 pixels in width and should be 34
pixels high; oversize logos will be scaled to fit.

Format: HTTPS URL; maximum 256 characters

Since 2.0

displayName (Optional) The merchant's name as it appears on the Review
panel of the lightbox; typically, it is the name of your company.

Format: Alphanumeric

Since 2.0

websiteUrl (Optional) Complete URL to your website.

Format: Valid URL, beginning with HTTP

Since 2.0

October 27, 2014 2-7

Visa Checkout JavaScript and Button Reference Visa Checkout
JavaScript Integration Guide

Property Description
customerSupportUrl (Optional) Your complete customer service or support URL.

Format: Valid URL, beginning with HTTP

Since 2.0

shipping (Optional) Shipping properties associated with the lightbox; see
Shipping Properties.

Format: shipping

Since 2.0

review (Optional) Review properties associated with the lightbox; see
Review Properties.

Format: review

Since 2.0

payment (Optional) Payment method properties associated with the
lightbox; see Payment Properties.

Format: payment

Since 2.0

dataLevel (Optional) The level of consumer and payment information that
the payment.success event response should include. If
you request information, permission to receive full information
must be configured in Visa Checkout; otherwise, you will always
receive only summary information, regardless of the data level
you specify.

Format: It is one of the following values:

• SUMMARY - Summary information (default)

• FULL - Full information, which is only available if you are
configured to receive it

• NONE - Consumer and payment information is not returned
in the payment.success event response, in which case
the Get Payment Data API must be used to obtain the
information. Since 2.5.

Since 2.0

Lightbox Panel Configuration Example

You can customize the appearance of lightbox panels, including the language in which
text appears, whether the confirmation button is Continue or Pay, and various messages
and ornaments:

2-8 October 27, 2014

Visa Checkout
JavaScript Integration Guide

V.init Event Handler

V.init({
...
settings: {
locale: "en_US",
countryCode: "US",
displayName: "MegaCorp",
logoUrl: "www.Some_Image_URL.gif",
websiteUrl: "www.MegaCorp.com",
customerSupportUrl: "www.MegaCorp.support.com",
...
dataLevel: "FULL"
...

);

Shipping Properties

Property Description
acceptedRegions (Optional) Override value for shipping region country codes in

the merchant's external profile, which limits selection of eligible
addresses in the consumer's account.

Format: A list of ISO-3166-1 alpha-2 standard codes, such as
US or CA.

Since 2.0

collectShipping (Optional) Whether to obtain a shipping address from the
consumer.

Format: One of the following values:

• true - Obtain shipping address (default)

• false - Shipping address is not required

Since 2.0

Shipping Options Configuration Example

You can specify whether the consumer can set the shipping address (collectShipping)
and the regions to which you ship:

V.init({
...
settings: {
...
shipping: {
acceptedRegions: ["US", "CA"],
collectShipping: "true"
},
...

);

October 27, 2014 2-9

Visa Checkout JavaScript and Button Reference Visa Checkout
JavaScript Integration Guide

Review Properties

Property Description
message (Optional) Your message to display on the Review page. You are

responsible for translating the message.

Format: Alphanumeric; maximum 120 characters

Since 2.0

buttonAction (Optional) The button label in the Visa Checkout lightbox.

Format: One of the following values:

• Continue - Display Continue on the lightbox button
(default)

• Pay - Display Pay on the lightbox button

Note: –A value for total must be specified; otherwise
Continue will be displayed.

Since 2.0

Review Options Configuration Example

You can specify a message to display in the Visa Checkout lightbox and control the
button text:

review: {
message: "Merchant defined message",
buttonAction: "Continue"
},

Payment Properties

Property Description
cardBrands (Optional) Card brands that are accepted.

Format: Array containing one or more of the following brands:

• VISA

• MASTERCARD

• AMEX

• DISCOVER

Since 2.0

acceptCanadianVisaDebit (Optional) Override of whether a Canadian merchant accepts Visa
Canada debit cards; ignored for non-Canadian merchants.

Format: One of the following values:

• true - Visa Canada debit cards accepted

• false - Visa Canada debit cards not accepted

Example: acceptCanadianVisaDebit : "true"

Since 2.0

2-10 October 27, 2014

Visa Checkout
JavaScript Integration Guide

V.init Event Handler

Payment Options Configuration Example

You can limit the kind of cards you accept:

V.init({
...
settings: {
...
payment: {
cardBrands: [
"VISA",
"MASTERCARD"],
acceptCanadianVisaDebit : "true"
},
...
},
...
);

Payment Request Properties

Property Description
merchantRequestId (Optional) Merchant's ID associated with the request. Visa

Checkout stores this value for your use as a convenience.

Format: Alphanumeric; maximum 100 characters

Since 2.0

currencyCode (Required) The currency with which to process the transaction.

Format: It is one of the following ISO 4217 standard alpha-3
code values:

• USD - US dollars

• CAD - Canadian dollars

• AUD - Australian dollars

Currency codes must be uppercase.

Example: "currencyCode" : "USD"

Since 2.0

subtotal (Required) Subtotal of the payment.

Format: Numeric; maximum 7 digits with optional decimal point
and 2 decimal digits

Example: "subtotal" : "9.00"

Since 2.0

shippingHandling (Optional) Total of shipping and handling charges in the payment.

Format: Numeric; maximum 7 digits with optional decimal point
and 2 decimal digits

Example: "shippingHandling" : "3.00"

Since 2.0

October 27, 2014 2-11

Visa Checkout JavaScript and Button Reference Visa Checkout
JavaScript Integration Guide

Property Description
tax (Optional) Total tax-related charges in the payment.

Format: Numeric; maximum 7 digits with optional decimal point
and 2 decimal digits

Example: "tax" : "1.00"

Since 2.0

discount (Optional) Total of discounts related to the payment. If provided,
it is a positive value representing the amount to be deducted
from the total.

Format: Numeric; maximum 7 digits with optional decimal point
and 2 decimal digits

Example: "discount" : "2.50"

Since 2.0

giftWrap (Optional) Total gift-wrapping charges in the payment.

Format: Numeric; maximum 7 digits with optional decimal point
and 2 decimal digits

Example: "giftWrap" : "1.99"

Since 2.0

misc (Optional) Total uncategorized charges in the payment.

Format: Numeric; maximum 20 digits, including an optional
decimal point.

Example: "misc" : "1.00"

Since 2.0

total (Optional) Total of the payment including all amounts.

Format: Numeric; maximum 7 digits with optional decimal point
and 2 decimal digits

Example: "total" : "9.00"

Since 2.0

orderId (Optional) Merchant's order ID associated with the payment.

Format: Alphanumeric; maximum 100 characters

Since 2.0

2-12 October 27, 2014

Visa Checkout
JavaScript Integration Guide

V.init Event Handler

Property Description
promoCode (Optional) Promotion codes associated with the payment. Multiple

promotion codes are separated by a period (.).

Format: Alphanumeric; maximum 100 characters

Example: promoCode: "ABC"."DEF"."XYZ"

Since 2.0

customData (Optional) Merchant-supplied data, as name-value pairs.

Format: Alphanumeric; maximum 1024 characters

Example:

customData: {
"nvPair": [
{ "name": "Name1", "value": "value1" },
{ "name": "Name2", "value": "value2" }
] ...

Since 2.0

Note: –The sandbox sets specific risk advice and score values based on the subTotal of
the transaction in the request. The risk information is returned in the consumer
information payload (encPaymentData) of a successful response.

Value of the transaction
(USD only)

Value of advice in the
response

Value of score in the
response

0.01 to 0.99

Note: –Amounts between
0.01 and 0.89 cause
the transaction to be
declined.

UNAVAILABLE 0

1.00 to 49.99 LOW 10

50.00 to 149.99 MEDIUM 45

150.00 or more HIGH 90

Payment Request Configuration Example

You specify the payment request for which the consumer is being asked to agree:

October 27, 2014 2-13

Visa Checkout JavaScript and Button Reference Visa Checkout
JavaScript Integration Guide

V.init({
...
paymentRequest: {
merchantRequestId: "Merchant defined request ID",
currencyCode: "USD",
subtotal: "10.00",
shippingHandling: "2.00",
tax: "2.00",
discount: "1.00",
giftWrap: "2.00",
misc: "1.00",
total: "16.00",
description: "Megacorp Product",
orderId: "Merchant defined order ID",
promoCode: "Merchant defined promo code",
customData: {
"nvPair": [
{ "name": "customName1", "value": "customValue1" },
{ "name": "customName2", "value": "customValue2" }
]

...
);

Response to Payment Success Events

The response associated with the payment.success event returns the following
information:

Property Description
callId Visa Checkout transaction ID, which represents the purchase.

Format: Alphanumeric; maximum 48 characters

Example: "callId":"..."

Since 2.0

responseStatus Response status.

Format: Response status structure

Since 2.0

encKey Encrypted key to be used to decrypt encPaymentData. You
use your shared secret to decrypt this key.

Format: Alphanumeric; maximum 128 characters

Example: "encKey":"..."

Since 2.0

2-14 October 27, 2014

Visa Checkout
JavaScript Integration Guide

Response to Payment Success Events

Property Description
encPaymentData Encrypted consumer and payment data that can be used to

process the transaction. You decrypt this by first unwrapping the
encKey value, then using that unwrapped key to decrypt this
value.

Format: Alphanumeric; maximum 1024 characters

Example: "encPaymentData":"..."

Since 2.0

externalClientId Merchant ID of the merchant receiving the payment.

Format: Alphanumeric; maximum 100 characters

Since 2.0

partialShippingAddress Partial shipping address of the consumer.

Format: Partial shipping address structure

Since 2.0

Response Status

Property Description
status HTTPS response status.

Format: Numeric

Since 2.0

code Internal subcode.

Format: Numeric

Since 2.0

severity Severity of the error.

Format: It is one of the following values:

• ERROR

• WARNING

Since 2.0
message Description of the error.

Format: Alphanumeric

Since 2.0

October 27, 2014 2-15

Visa Checkout JavaScript and Button Reference Visa Checkout
JavaScript Integration Guide

Partial Shipping Address

Property Description
countryCode Country code of the country where the purchase should be

shipped, such as US; useful for calculating shipping costs.

Format: Alphanumeric; maximum 2 characters

Since 2.0

postalCode Postal code of the location where the purchase should be shipped,
if available; useful for calculating shipping costs.

Format: Alphanumeric; maximum 128 characters

Since 2.0

Response to Payment Cancelled Events

Property Description
callId Visa Checkout transaction ID, which represents the cancelled

payment.

Format: Alphanumeric; maximum 48 characters

Example: "callId":"..."

Since 2.0

Response to Error Events

Property Description
status HTTPS response status.

Format: Numeric

Since 2.0

code Internal subcode.

Format: Numeric

Since 2.0

severity Severity of the error.

Format: It is one of the following values:

• ERROR

• WARNING

Since 2.0
message Description of the error.

Format: Alphanumeric

Since 2.0

2-16 October 27, 2014

Visa Checkout
JavaScript Integration Guide

Optimizing the Checkout Flow for Mobile Browsers

Example

{
"responseStatus" : { "status" : 404,
"code" : "1010",
"severity" : "ERROR",
"message" : "CallId b9346ed5-08d1-44b2-be32-bbde5c4bf34f was not found."
}
}

Optimizing the Checkout Flow for Mobile Browsers
Visa Checkout is optimized for mobile browsers even if your checkout flow is not. Support
is provided for both iOS and Android devices. In order to allow for a mobile optimized Visa
Checkout experience, add the following <meta> tag to your HTML <head> block:
<html>
<head>
...
<meta name="viewport"
content="width=device-width, initial-scale=1.0, maximum-scale=1.0,
user-scalable=no" />
...
</head>

Complete Web Page HTML Example
You initialize the Visa Checkout library in the V.init event handler of your
onVisaCheckoutReady function with properties that identify the merchant implementing
the button, button characteristics and settings related to the behavior of the lightbox, and
payment request properties. You specify how to respond to events related to the lightbox
closing and the payment request in V.on event handlers.

Note: –You must provide your API key when initializing the Visa Checkout JavaScript
library.

The following example shows an HTML web page that loads the Visa Checkout library,
defines handlers for initialization and payment events, and creates a Visa Checkout
button:

<html>
<head>
<script type="text/javascript">
function onVisaCheckoutReady() {
V.init({
apikey: "...",
sourceId: "Merchant Defined Source ID",
settings: {
locale: "en_US",
countryCode: "US",
displayName: "...Corp",
logoUrl: "www.Some_Image_URL.gif",
websiteUrl: "www....Corp.com",
customerSupportUrl: "www....Corp.support.com",
shipping: {
acceptedRegions: ["US", "CA"],

October 27, 2014 2-17

Visa Checkout JavaScript and Button Reference Visa Checkout
JavaScript Integration Guide

collectShipping: "true"
},
payment: {
cardBrands: [
"VISA",
"MASTERCARD"],
acceptCanadianVisaDebit: "true"
},
review: {
message: "Merchant defined message",
buttonAction: "Continue"
},
dataLevel: "SUMMARY"
},
paymentRequest: {
merchantRequestId: "Merchant defined request ID",
currencyCode: "USD",
subtotal: "10.00",
shippingHandling: "2.00",
tax: "2.00",
discount: "1.00",
giftWrap: "2.00",
misc: "1.00",
total: "16.00",
description: "Megacorp Product",
orderId: "Merchant defined order ID",
promoCode: "Merchant defined promo code",
customData: {
"nvPair": [
{ "name": "customName1", "value": "customValue1" },
{ "name": "customName2", "value": "customValue2" }
]
}
}
}
);
V.on("payment.success", function(payment){document.write(JSON.stringify(payment)); });
V.on("payment.cancel", function (payment) { ... });
V.on("payment.error", function (payment, error) { ... });

}
</script>
</head>
<body>
<img alt="Visa Checkout" class="v-button" role="button"
src="https://sandbox.secure.checkout.visa.com/wallet-services-web/xo/button.png?
cardBrands=VISA,MASTERCARD,DISCOVER,AMEX"/>
<script type="text/javascript"
src="https://sandbox-assets.secure.checkout.visa.com/

checkout-widget/resources/js/integration/v1/sdk.js">
</script>
</body>
</html>

2-18 October 27, 2014

Update Payment Info Pixel Image 3

Update Payment Info Pixel Image Summary
You must confirm a purchase by including payment/updatepaymentinfo.gif on a
page that appears after the customer reviews and approves the order. Specifically, you
associate parameters that convey the purchase information with the image before the
image is loaded on the page, allowing the information to be transmitted to Visa Checkout
when the image is loaded.

Note: –The updatepaymentinfo.gif image itself is 1-pixel.
You must specify the following parameters as part of the image URL:
• Your public API key (apikey), which is different than your shared secret or an

encrypted key (encKey)
• A token (token) that comprises your shared secret, timestamp, and other information

to guarantee the integrity of the parameters being sent to Visa Checkout.
• Transaction whose payment you want to confirm (callId)

Notes

1. You can calculate shipping, apply discounts, and so on, within the button source itself
if you want the consumer to confirm in the lightbox.

2. You must load the image with the query parameters or call payment/info.
3. As a best practice, you should load payment/updatepaymentinfo.gif when the

consumer confirms the order on your confirmation page.
4. You can only specify the order update or payment update in the same operation; you

cannot do both in the same operation.
5. For the Update Payment Info API, or the Get Payment Data API, see Visa Checkout

Client API Reference.

Public and Private Key Security
You must follow these rules to implement essential security controls:
• At a high-level, the security of server communications is provided by the use of

public-private key pairs. You communicate to Visa Checkout with your public API key.
You include this key's shared secret (private API key), along with data that needs to

October 27, 2014 3-1

Update Payment Info Pixel Image Visa Checkout
JavaScript Integration Guide

be protected from tampering, all of which are encrypted using an SHA256-bit hashing
algorithm.

Important:

You must only use a key and shared secret provided to you by Visa; specifically,
you cannot communicate with Visa Checkout using keys or secrets that are not
explicitly assigned to you by Visa.

• YOU ARE SOLELY RESPONSIBLE FOR MAINTAINING ADEQUATE SECURITY
AND CONTROL OF ANY API OR SHARED SECRET KEYS PROVIDED TO YOU.
Because the shared secret ensures secure communications between you and
Visa Checkout, you must protect the shared secret, allowing only authorized and
authenticated entities, e.g. people, APIs, code, etc., to access the shared secret. The
shared secret should never be stored or available unencrypted on a web page. The
shared secret must be protected using either hardware- or software- based strong
encryption, such as AES. In addition, you must provide your own secure server to
store the encrypted shared secret. Because the shared secret is hashed along with
changing data, you will need to create hash strings in real time.

Update Payment Info Pixel Image Request

Path and Endpoints

Resource Path: payment/updatepaymentinfo.gif

Complete endpoint:

Sandbox:

https://sandbox.secure.checkout.visa.com/wallet-services-web/payment/updatepaymentinfo.gif

Live:

https://secure.checkout.visa.com/wallet-services-web/payment/updatepaymentinfo.gif

3-2 October 27, 2014

Visa Checkout
JavaScript Integration Guide

Update Payment Info Pixel Image Request

Update Payment Info Pixel Image Request Parameters

Property Description
apikey (Required) Your public API key, which is different than your

shared secret.

Format: Alphanumeric; maximum 100 characters

Example: apikey=xxxxxxxxxxxxxxxxxxxx

Since 2.0

callId (Required) Visa Checkout transaction ID returned by the Visa
Checkout payment.success event.

Format: Alphanumeric; maximum 48 characters

Example: "callId":"..."

Since 2.0

token (Required) A token identifying the transaction and its contents.

Format: Alphanumeric; maximum 100 characters in the form
of token: x:UNIX_UTC_Timestamp:SHA256_hash,
where

• UNIX_UTC_Timestamp is a UNIX Epoch timestamp

• SHA256_hash is an SHA256 hash of the following
unseparated items:

1. Your shared secret

2. Timestamp from the transaction; exactly the same as
UNIX_UTC_Timestamp

3. Resource path (API name)

4. This HTTPS request's query string

Note: –The query string includes one or more
parameters in name-value pair format, whose
names are separated from values by equal
signs (=); an empty value may be omitted but
the name and equal sign must be present. The
initial question mark (?) is not included.

All parameters must be present. The
parameters must be in lexicographic sort
order (UTF-8, uppercase hex characters) with
parameters separated from each other by an
ampersand (&).

The query string must be URL encoded
(excepting the following characters, per RFC
3986: hyphen, period, underscore. and tilde).

Example: token: x:1358092911:....

Since 2.0

October 27, 2014 3-3

Update Payment Info Pixel Image Visa Checkout
JavaScript Integration Guide

Property Description
total (Optional) Total of the payment including all amounts.

Format: Numeric; maximum 7 digits with optional decimal point
and 2 decimal digits

Example: "total":"9.00"

Since 2.0

currencyCode The currency with which to process the transaction. Required if
total is provided.

Format: It is one of the following ISO 4217 standard alpha-3
code values:

• USD - US dollars

• CAD - Canadian dollars

• AUD - Australian dollars

Currency codes must be uppercase.

Example: "currencyCode":"USD"

Since 2.0

subtotal (Required) Subtotal of the payment.

Format: Numeric; maximum 7 digits with optional decimal point
and 2 decimal digits

Example: "subtotal":"9.00"

Since 2.0

shippingHandling (Optional) Total of shipping and handling charges for the payment.

Format: Numeric; maximum 7 digits with optional decimal point
and 2 decimal digits

Example: "shippingHandling" : "3.00"

Since 2.0

tax (Optional) Total tax-related charges in the payment.

Format: Numeric; maximum 7 digits with optional decimal point
and 2 decimal digits

Example: "tax":"1.00"

Since 2.0

discount (Optional) Total of discounts related to the payment. If provided, it
is subtracted from the subtotal.

Format: Numeric; maximum 7 digits with optional decimal point
and 2 decimal digits

Example: "discount" : "-2.50"

Since 2.0

3-4 October 27, 2014

Visa Checkout
JavaScript Integration Guide

Update Payment Info Pixel Image Response

Property Description
giftWrap (Optional) Total gift-wrapping charges in the payment.

Format: Numeric; maximum 7 digits with optional decimal point
and 2 decimal digits

Example: "giftWrap" : "1.99"

Since 2.0

misc (Optional) Total uncategorized charges in the payment.

Format: Numeric; maximum 7 digits with optional decimal point
and 2 decimal digits

Example: "misc":"1.00"

Since 2.0

eventType (Required) Kind of event associated with the update.

Format: It is one of the following values:

• Create

• Confirm

• Cancel

• Fraud

• Other

Example: "eventType":"Confirm"

Since 2.0

orderId (Optional) Merchant's order ID associated with the payment.

Format: Alphanumeric; maximum 100 characters

Since 2.0

promoCode (Optional) Promotion codes associated with the payment. Multiple
promotion codes are separated by a period (.).

Format: Alphanumeric; maximum 100 characters

Example: promoCode: "ABC"."DEF"."XYZ"

Since 2.0
reason (Optional) Reason for the update.

Format: Alphanumeric; maximum 255 characters

Since 2.0

Update Payment Info Pixel Image Response

Update Payment Data Info Pixel Image Success Response

The 1-pixel image

October 27, 2014 3-5

Update Payment Info Pixel Image Visa Checkout
JavaScript Integration Guide

Update Payment Data Info Pixel Image Error Messages

An error response contains the v-message header that you can use to determine the
error. Typically, you will use debugging tools built into the browser to view this message.

Header Description
v-message Visa Checkout error message.

Format: Alphanumeric

Example: "v-message":"callid
ff6e689c-170c-4f18-a1ba-da5047a35f152 was
not found"

Since 2.0

Update Payment Info Pixel Image Examples

Update Payment Info Request

GET
https://sandbox.secure.checkout.visa.com/wallet-services-web/payment/updatepaymentinfo.gif
?token=x:1397855991:...
&apikey=...
&callId=...
&total=1...
¤cyCode=USD&
orderId=...
&promoCode=...
&reason=...
&subtotal=...
&shippingHandling=...
&tax=...
&discount=...
&giftWrap=...
&misc=...

Update Payment Info Error Response

v-message":"callid ... was not found

3-6 October 27, 2014

SHA256–Bit Hashing A

SHA256–Bit Hashing Algorithm

SHA256-bit hashing is required for any string that includes your shared secret:

• The x-pay-token header in API calls.

• The token in the 1-pixel Update Payment Info image tag.

These cases are unrelated to the return or decryption of consumer payment information;
specifically, SHA256-bit hashing is not used to decrypt payment data. The algorithms
used for decryption are different.

The strings to be encrypted are specific to the context; for example, the encrypted
string in the token field contains different content than encrypted string in the
x-pay-token header. The SHA256-bit hashing algorithm itself does not change, only
the input string to be encrypted. The output from the hash is an encrypted string that is
represented in 64 bytes.

Note: –You cannot decrypt a string once it has been encrypted with SHA256-bit hashing.
You use the encrypted string for comparison only. If your encrypted string is
not the same as the encrypted string created by Visa Checkout, Visa Checkout
rejects your request. When Visa Checkout returns a signature in the response,
you should create your own string with the same fields separated by ampersands
(&) where required, in the same order, and encrypt it for comparison. If your
encrypted string does not match the signature, you should not trust that the
response came from Visa Checkout.

October 27, 2014 A–1

SHA256–Bit Hashing Visa Checkout
JavaScript Integration Guide

SHA256–Bit Hashing Examples

SHA256–Bit Hash Java Example

import java.security.MessageDigest;
import java.security.SignatureException;
String sourceString = ...; // shared secret + fields in correct format
String hash = sha256Digest(sourceString);

public String sha256Digest (String data) throws SignatureException {
return getDigest(“SHA-256”, data, true);
}

private String getDigest(String algorithm, String data, boolean toLower)
throws SignatureException {
try {
MessageDigest mac = MessageDigest.getInstance(algorithm);
mac.update(data.getBytes(“UTF-8”));
return toLower ?
new String(toHex(mac.digest())).toLowerCase() : new String(toHex(mac.digest()));
} catch (Exception e) {
throw new SignatureException(e);
}

}

private String toHex(byte[] bytes) {
BigInteger bi = new BigInteger(1, bytes);
return String.format(“%0” + (bytes.length << 1) + “X”, bi);
}

Note: –org.apache.commons.code.digest is a useful library for generating the
SHA256 hash.

SHA256–Bit Hash PHP Example

$hash = hash('sha256',$sourceString);

SHA256–Bit Hash Ruby Example

require ‘digest’
hash = Digest::SHA256.hexdigest(sourceString)

SHA256–Bit Hash Python Example

hash = hashlib.sha256(sourceString).hexdigest()

A–2 October 27, 2014

Visa Checkout
JavaScript Integration Guide

SHA256–Bit Hashing Examples

SHA256–Bit Hash C# Example

import System.Security.Cryptography.SHA256;

public string GetHashSha256(string text)
{
byte[] bytes = Encoding.ASCII.GetBytes(text);
SHA256Managed hashstring = new SHA256Managed();
byte[] hash = hashstring.ComputeHash(bytes);
string hashString = string.Empty;

foreach (byte x in hash)
{
hashString += String.Format("{0:x2}", x);
}
return hashString;

}

October 27, 2014 A–3

A–4 October 27, 2014

SHA256–Bit Hashing Visa Checkout
JavaScript Integration Guide

THIS PAGE INTENTIONALLY LEFT BLANK.

Clickjacking Prevention B

Clickjacking Prevention Steps

To prevent clickjacking of your pages, each page must contain JavaScript to verify that
there are no transparent layers, such as might be the case if your page was loaded as an
iFrame of a page containing malicious code, and that only your site can load your pages.

Checking for Hidden Layers

Pages that prevent clickjacking contain JavaScript, such as the following, to verify that
there are no transparent layers in which malicious code could reside:

<head>
...
<style id=”antiClickjack”>body{display:none;}</style>
<script type=”text/javascript”>
if (self === top) {
var antiClickjack = document.getElementById(“antiClickjack”);
antiClickjack.parentNode.removeChild(antiClickjack);
} else {
top.location = self.location;
}
</script>
...
</head>

Using the X-Options Header

Messages directed at your pages must include an X-FRAME-OPTIONS header to verify
that the response is known to be from your web application:

• X-FRAME-OPTIONS DENY

prevents anything from framing your page.

• X-FRAME-OPTIONS SAMEORIGIN

prevents anything except your application from framing your page.

October 27, 2014 B–1

Clickjacking Prevention Visa Checkout
JavaScript Integration Guide

Testing Your Clickjacking Prevention Implementation

To test your implementation of anti-clickjacking measures:

Note: –These steps assume your site is not already in an iFrame.
1. Install or use a test server that is not being used for your production or sandbox site

and does not contain the pages that you want to test. For example, you can test using
Tomcat on localhost:8080.

2. Create a page on your test server that loads the page containing the Visa Checkout
button in an iFrame.

<html>
<body>
<iframe src="https://www.yoursite.com/..." width=100% height=100%>
<p>Your browser does not support iframes.</p>

</iframe>
</body>
</html>

3. Test the page you created to load your actual page in an iFrame.

Your test page should either be blank or display a message, such as The content
cannot be displayed in a frame. If you can see the page that contains the Visa
Checkout button, your prevention measures are not sufficient.

As a best practice, you should automate these steps so that you automatically run a
script to test your clickjacking prevention measures whenever you change or add a
page to your site.

Example Server-Side Clickjacking Prevention Implementation

The following example shows how to implement X-FRAME-OPTIONS DENY or
X-FRAME-OPTIONS SAMEORIGIN headers in a Java servlet for pages served by Tomcat:

Java Servlet

The following sample implements a servlet to provide either the X-FRAME-OPTIONS DENY
header or the X-FRAME-OPTIONS SAMEORIGIN header as a filter:

B–2 October 27, 2014

Visa Checkout
JavaScript Integration Guide

Example Server-Side Clickjacking Prevention
Implementation

package com.your_package.filters;
import java.io.IOException;

import javax.servlet.Filter;
import javax.servlet.FilterChain;
import javax.servlet.FilterConfig;
import javax.servlet.ServletException;
import javax.servlet.ServletRequest;
import javax.servlet.ServletResponse;
import javax.servlet.http.HttpServletResponse;

public class ClickjackFilter implements Filter
{

private String mode = “DENY”;

public void doFilter(ServletRequest request, ServletResponse response,
FilterChain chain) throws IOException, ServletException {

HttpServletResponse res = (HttpServletResponse)response;
chain.doFilter(request, response);
res.addHeader(“X-FRAME-OPTIONS”, mode);

}

public void destroy() {
}

public void init(FilterConfig filterConfig) {
String configMode = filterConfig.getInitParameter(“mode”);
if (configMode != null) {

mode = configMode;
}

}

}

Tomcat Configuration

Add the filter definition and mapping to your web application's web.xmlfile. Set up the
mapping so that it applies to any page that hosts the Visa Checkout button:

October 27, 2014 B–3

Clickjacking Prevention Visa Checkout
JavaScript Integration Guide

<?xml version=”1.0” encoding=”UTF-8”?>
<web-app id=”WebApp_ID” version=”2.4”

xmlns=”http://java.sun.com/xml/ns/j2ee”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee http://java.sun.com/xml/ns/j2ee/
web-app_2_4.xsd”>
<display-name>ClickjackFilter</display-name>
<filter>

<filter-name>ClickjackFilterDeny</filter-name>
<filter-class>com.merchant.filters.ClickjackFilter</filter-class>
<init-param>

<param-name>mode</param-name>
<param-value>DENY</param-value>

</init-param>
</filter>

<filter>
<filter-name>ClickjackFilterSameOrigin</filter-name>
<filter-class>com.merchant.filters.ClickjackFilter</filter-class>
<init-param>

<param-name>mode</param-name>
<param-value>SAMEORIGIN</param-value>

</init-param>
</filter>

<!--
Use either the Deny or SameOrigin version. Do not use both versions at the same time.
-->

<!--
Use the Deny version to prevent everything, including your webapp, from framing the page.
-->

<filter-mapping>
<filter-name>ClickjackFilterDeny</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>

<!–-
Use SameOrigin to prevent everything, excepting your webapp, from framing the page.
-->
<!--

<filter-mapping>
<filter-name>ClickjackFilterSameOrigin</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>
-->

</web-app>

B–4 October 27, 2014

AVS and CVV Responses C

AVS Codes

AVS codes can be returned by Visa Checkout in the avsResponseCode response field.

AVS
Code Description
A Partial match: street address matches, but 5-digit and 9-digit postal codes do not match.

B Partial match: street address matches, but postal code is not verified. Returned only
for non U.S.-issued Visa cards.

C No match: street address and postal code do not match. Returned only for non
U.S.-issued Visa cards.

D Match: street address and postal code match. Returned only for non U.S.-issued Visa
cards.

E Invalid: AVS data is invalid or AVS is not allowed for this card type.

F Partial match: card member’s name does not match, but billing postal code matches.
Returned only for the American Express card type.

G Not supported: non-U.S. issuing bank does not support AVS.

H Partial match: card member’s name does not match, but street address and postal code
match. Returned only for the American Express card type.

I No match: address not verified. Returned only for non U.S.-issued Visa cards.

J Match: card member’s name, billing address, and postal code match. Shipping
information verified and chargeback protection guaranteed through the Fraud Protection
Program. Returned only if you are signed up to use AAV+ with the American Express
Phoenix processor.

K Partial match: card member’s name matches, but billing address and billing postal code
do not match. Returned only for the American Express card type.

L Partial match: card member’s name and billing postal code match, but billing address
does not match. Returned only for the American Express card type.

M Match: street address and postal code match. Returned only for non U.S.-issued Visa
cards.

October 27, 2014 C–1

AVS and CVV Responses Visa Checkout
JavaScript Integration Guide

AVS
Code Description
N No match: one of the following: Street address and postal code do not match. Card

member’s name, street address, and postal code do not match. Returned only for the
American Express card type

O Partial match: card member’s name and billing address match, but billing postal code
does not match. Returned only for the American Express card type.

P Partial match: postal code matches, but street address not verified. Returned only for non
U.S.-issued Visa cards.

Q Match: card member’s name, billing address, and postal code match. Shipping information
verified but chargeback protection not guaranteed (Standard program). Returned only if
you are signed up to use AAV+ with the American Express Phoenix processor.

R System unavailable.

S Not supported: U.S.-issuing bank does not support AVS.

T Partial match: card member’s name does not match, but street address matches.
Returned only for the American Express card type.

U System unavailable: address information unavailable for one of these reasons: The
U.S. bank does not support non-U.S. AVS. Or The AVS in a U.S. bank is not functioning
properly.

V Match: card member’s name, billing address, and billing postal code match. Returned
only for the American Express card type.

W Partial match: street address does not match, but 9-digit postal code matches.

X Match: street address and 9-digit postal code match.

Y Match: street address and 5-digit postal code match.

Z Partial match: street address does not match, but 5-digit postal code matches.

1 Not supported: AVS is not supported for this processor or card type.

2 Unrecognized: the processor returned an unrecognized value for the AVS response.

CVV Codes

CVV codes can be returned by Visa Checkout in the cvvResponseCode response field.

CVV
Code Description
M The CVN matched.

P The CVN was not processed by the processor for an unspecified reason.

S The CVN is on the card but was not included in the request.

U Card verification is not supported by the issuing bank.

X Card verification is not supported by the card association.

1 Card verification is not supported for this processor or card type.

2 An unrecognized result code was returned by the processor for the card verification
response.

3 No result code was returned by the processor.

C–2 October 27, 2014

US, Canadian, and Australian
Location Abbreviations

D

Shipping and billing addresses for the United States, Canada, and Australia use standard
abbreviations for states, provinces, and other locations.

United States Abbreviations for States and Mailing Locations

State/Location Abbreviation
ALABAMA AL

ALASKA AK

AMERICAN SAMOA AS

ARIZONA AZ

ARKANSAS AR

CALIFORNIA CA

COLORADO CO

CONNECTICUT CT

DELAWARE DE

DISTRICT OF COLUMBIA DC

FEDERATED STATES OF MICRONESIA FM

FLORIDA FL

GEORGIA GA

GUAM GU

HAWAII HI

IDAHO ID

ILLINOIS IL

INDIANA IN

IOWA IA

October 27, 2014 D–1

US, Canadian, and Australian Location Abbreviations Visa Checkout
JavaScript Integration Guide

State/Location Abbreviation

KANSAS KS

KENTUCKY KY

LOUISIANA LA

MAINE ME

MARSHALL ISLANDS MH

MARYLAND MD

MASSACHUSETTS MA

MICHIGAN MI

MINNESOTA MN

MISSISSIPPI MS

MISSOURI MO

MONTANA MT

NEBRASKA NE

NEVADA NV

NEW HAMPSHIRE NH

NEW JERSEY NJ

NEW MEXICO NM

NEW YORK NY

NORTH CAROLINA NC

NORTH DAKOTA ND

NORTHERN MARIANA ISLANDS MP

OHIO OH

OKLAHOMA OK

OREGON OR

PALAU PW

PENNSYLVANIA PA

PUERTO RICO PR

RHODE ISLAND RI

SOUTH CAROLINA SC

SOUTH DAKOTA SD

TENNESSEE TN

TEXAS TX

UTAH UT

VERMONT VT

VIRGIN ISLANDS VI

VIRGINIA VA

WASHINGTON WA

D–2 October 27, 2014

Visa Checkout
JavaScript Integration Guide

Canadian Province Abbreviations

State/Location Abbreviation

WEST VIRGINIA WV

WISCONSIN WI

WYOMING WY

US Armed Forces Military Locations

Armed Forces Africa AE

Armed Forces Americas (except Canada) AA

Armed Forces Canada AE

Armed Forces Europe AE

Armed Forces Middle East AE

Armed Forces Pacific AP

Canadian Province Abbreviations
Province Abbreviation
Alberta AB

British Columbia BC

Manitoba MB

New Brunswick NB

Newfoundland and Labrador NL

Northwest Territories NT

Nova Scotia NS

Nunavut NU

Ontario ON

Prince Edward Island PE

Quebec QC

Saskatchewan SK

Yukon YT

Australian State and Territory Abbreviations
State or Territory Abbreviation

New South Wales NSW

Australian Capital Territory ACT

Victoria VIC

Queensland QLD

South Australia SA

Western Australia WA

October 27, 2014 D–3

US, Canadian, and Australian Location Abbreviations Visa Checkout
JavaScript Integration Guide

State or Territory Abbreviation
Tasmania TAS

Northern Territory NT

D–4 October 27, 2014

Document Revision History E

• Version 2.0, April 29, 2014

• Version 2.1, June 10, 2014

• Version 2.2, July 8, 2014

• Version 2.3, August 5, 2014

• Version 2.4, September 2, 2014

• Version 2.5, October 7, 2014

October 27, 2014 E–1

E–2 October 27, 2014

Document Revision History Visa Checkout
JavaScript Integration Guide

THIS PAGE INTENTIONALLY LEFT BLANK.

